Journal of Organometallic Chemistry, 362 (1989) 117-124 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Die Protonierung von Ylidkomplexen des Mangans mit HBF₄. Die Molekülstruktur von $[C_5H_5(CO)_2MnCH_2CH(PEt_3)]BF_4$

Helmut G. Alt *, Heidi E. Engelhardt

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstr. 30, D-8580 Bayreuth (Bundesrepublik Deutschland)

und Robin D. Rogers *

Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115 (U.S.A.) (Eingegangen den 5. Juli 1988)

Abstract

The protonation of the ylide complexes $Cp'(CO)_2MnCHCH(PEt_3)$ (I) $(Cp' = \eta^5 - C_5H_5$ (a), $\eta^5 - C_5H_4Me$ (b)) with HBF₄ yields the ylidic metallacyclopropane salts $[Cp'(CO)_2MnCH_2CH(PEt_3)]BF_4$ (II). The crystal structure of IIa is described.

Zusammenfassung

Die Protonierung der Ylidkomplexe $Cp'(CO)_2MnCHCH(PEt_3)$ (I) $(Cp' = \eta^5 - C_5H_5$ (a), $\eta^5 - C_5H_4Me$ (b)) mit HBF₄ führt zu den ylidischen Metallacyclopropan-Komplexsalzen $[Cp'(CO)_2MnCH_2CH(PEt_3)]BF_4$ (II). Die Molekülstruktur von IIa wird diskutiert.

Einleitung

Die Acetylenkomplexe $Cp'(CO)_2MnC_2H_2$ reagieren mit Phosphanen PR₃ (R = Me, Et), wobei unter Addition des Phosphans an den C_2H_2 -Liganden die Ylidkomplexe $Cp'(CO)_2MnCHCH(PR_3)$ gebildet werden [1]. In dieser Arbeit berichten wir über die Protonierung der Carbenkomplexe I.

Ergebnisse und Diskussion

Protonierung von $Cp'(CO)_2 MnCHCH(PEt_3)$ (I)

Die Ylidkomplexe Ia, b reagieren mit HBF_4 in Diethyletherlösung, wobei die Addukte IIa, b gebildet werden, die salzartige ylidische Metallacyclopropankomplexe darstellen.

Tabelle 1								
IR-, ¹ H-NMR- und ³¹ P-NMR-Daten der Kor	mplexe IIa und	IIb						
Verbindung	IR ^a		¹ H-NMR ^b				31P	NMR °
	r(CO)	δ(Cp')	8(-CH ₂ -) [J(H,H)][,	/(P,H)}	8(-CH-P-) [J(H,H)]{J(P,H)}	δ(PEt ₃) [J(H,H)]{J(P,H)	- 8(P	Et ₃)
[C ₅ H ₅ (CO) ₂ MnCH ₂ CH(PEt ₃)]BF ₄ (IIa)	1976/1907	5.13	3.44(3,3)[8. 2.25(d,d)]8	9/1.7]{23.3} 1]{n.e.}	3.09(m)[10.7/10.3] {10.2}	2.21(q)/1.33(t)[7.9] {17.9}	3] 50.	
[C ₅ H ₄ Me(CO) ₂ MnCH ₃ CH(PEt ₃)]BF ₄ (IIb)	1974/1905	5.11/5.05/ 4.93/4.85/ 2.01	3.24(d,d)[9] 2.23(m)[n.e	{23)]{n.e.}	3.01(m)[12.5/11.5] {11.7}	2.23(q)/1.34(t)[6. {17.6}	6] 46.	
^a In THF-Lösung (cm^{-1}) . ^b In Aceton- d_6 , H_3PQ_4/D_2O . dd = Doppeldublett, t = Triple	bei -20°C, { tt, q = Quadrup	ð(ppm) rel. Re olett, m = Multi	stprotonensi plett, n.e. = r	gnal (§ 2.04); nicht eindeutig.	J in Hz. ^c In Ace	on-d ₆ , bei –20°C	, 8 (pp	n) rel. ext.
Tabelle 2 ¹³ C-NMR-Daten von IIa und IIb sowie Festp	punkt- und Aus	beutebestimmu	ngen					
Verbindung	¹³ C-NMR ⁴						Zers. ^b	Ausb.
	8(Cp')	8 (9	ô(Mn−CH ₂ −)	δ(M-CH-P-) [J(P,C)]	8(PEt ₃) [J(P.C)]	()	(%)

Verbindung	¹³ C-NMR "					Zers. ^b	Ausb.
	å(Cp′)	\$(CO)	δ(Mn-CH ₂ −)	δ(M-CH-P-) [J(P,C)]	8(PEt ₃) [J(P,C)]	() ()	(%)
[C ₅ H ₅ (CO) ₂ MnCH ₂ CH(PEt ₃)]BF ₄ (IIa)	87.5	233.9/231.0	36.1	24.4[71.0]	13.4[50.8],5.9[4.9]	159	68
$[C_3H_4Me(CO)_2MnCH_2CH(PEt_3)]BF_4$ (11b)	103.2/88.2/88.0/86.7 86.5/12.6	234.1/231.2	37.0	26.0 71.8]	13.3[50.9],5.9[5.1]	136	73
	Eq. 11 . 1 . 10 . 2 .	0011					

In CD₂Cl₂, - 20°C, \delta(ppm) rel. CD₂Cl₂(8 53.8); J in Hz. ^o Zersetzungspunkt (°C) in Stickstoff-Atmosphäre.

Bei dieser Reaktion erfolgt offenbar direkte Protonierung am C_{α} -Atom des Ylidliganden, der sich dann die Cyclisierung über C_{β} anschließt.

Das Kation des Komplextyps II besitzt grosse Ähnlichkeit mit den neutralen Metallacyclopropankomplexen $Cp'(CO)_2M(COMe)CHCH(PR_3)$ (M = Mo, W; R = Me, Et), die bei der Umsetzung der metallacyclischen Alkenylketonkomplexe $Cp'(CO)_2MCHCHC(O)Me$ mit PR₃ entstehen [2].

Spektroskopische Charakterisierung von IIa,b und Diskussion der Ergebnisse

IR-Spektren

Die IR-Spektren zeigen für IIa,b zwei nahezu gleich intensive ν (CO)-Banden (vgl. Tab. 1), so wie dies für zwei zueinander *cis*-ständige CO-Liganden in einem tetragonal-pyramidal gebauten Molekül erwartet wird. Bei den sehr ähnlichen, aber neutralen Wolframkomplexen Cp'(CO)₂W(COMe)CHCH(PR₃) sind die ν (CO)-Banden um etwa 100 cm⁻¹ nach niedriger Energie verschoben.

¹H-NMR-Spektren

Der Cyclopentadienylligand und der Triethylphosphansubstituent liefern Signale im üblichen Bereich (vgl. Tab. 1). Die drei Manganacyclopropanprotonen von IIa,b treten als ABX-Spinsystem in Erscheinung, das zusätzlich durch die Spin-Spin-Wechselwirkung mit dem Phosphor aufgespalten wird. Es ist schwierig ein eindeutiges Signalmuster zu erkennen, insbesondere auch deshalb, weil die Signale – offenbar aufgrund einer ²J(Mn,H)-Kopplung (⁵⁵Mn: I = 5/2) – verbreitert in Erscheinung treten. Die ³¹P-entkoppelten Spektren liefern eine Reduzierung der Linien und erlauben Kopplungszuordnungen: Eine relativ grosse Kopplung von 23 Hz dürfte von einer *trans* ³J(P,H)-Kopplung stammen. Die entsprechende *cis*-Kopplung ist mit 9–10 Hz deutlich kleiner. Die ³J(H,H)-Kopplungen besitzen mit 8–9 Hz dieselbe Größenordnung. Die C₅H₄-Ringprotonen von IIb sind diastereotop, weil der Fünfring auch bei der Rotation um die π -Bindungsachse chiral bleibt.

¹³C-NMR-Spektren

Das Auftreten von zwei CO-Signalen ist ein Hinweis auf das Vorliegen eines starren, chiralen Dreirings. Von den zwei C-Atomen des Metallacyclopropans ist nur das eine, das an den Phosphor gebunden ist, zum Dublett aufgespalten $({}^{1}J(P,C) \approx 71$ Hz). Die Verbindung IIb zeigt für den C₅H₄Me-Liganden aufgrund seiner Chiralität fünf Signale für das C₅-Gerüst (vgl. Tab. 2).

Massenspektren

Von IIb konnte ein Fragment bei m/e = 368 beobachtet werden, das offenbar vom Kation $[C_5H_4Me(CO)_2MnCH_2CH(PEt_3)]^+$ stammt, das drei H-Atome eliminiert hat.

Fig. 1. Molekülstrukturen der zwei verschiedenen Kationen in IIa.

Tabelle 3

Atomabstände (Å) und Winkel (°) in den zwei verschiedenen Kationen von IIa

$\overline{Mn(1)-C(1)}$	1.774(7)	Mn(1)-C(2)	1.783(6)	
Mn(1)-C(3)	2.127(7)	Mn(1)-C(4)	2.139(7)	
Mn(1)C(5)	2.149(6)	Mn(1)-C(6)	2.161(8)	
Mn(1)-C(7)	2.139(7)	Mn(1)-C(8)	2.151(5)	
Mn(1)-C(9)	2.128(6)	Mn(2)-C(16)	1.789(7)	
Mn(2)-C(17)	1.784(6)	Mn(2)-C(18)	2.137(6)	
Mn(2)-C(19)	2.143(7)	Mn(2)–C(20)	2.168(7)	
Mn(2) - C(21)	2.162(7)	Mn(2)-C(22)	2.139(7)	
Mn(2)-C(23)	2.131(5)	Mn(2)-C(24)	2.141(6)	
P(1)-C(9)	1.800(6)	P(1)-C(10)	1.803(7)	
P(1)-C(12)	1.822(7)	P(1)-C(14)	1.790(6)	
P(2)-C(24)	1.786(6)	P(2)-C(25)	1.812(7)	
P(2)-C(27)	1.802(8)	P(2)-C(29)	1.784(7)	
B(1)-F(1)	1.397(9)	B(1)-F(2)	1.377(9)	
B(1)-F(3)	1.384(8)	B(1)-F(4)	1.364(9)	
B(2)-F(5)	1.370(9)	B (2)– F (6)	1.382(8)	
B(2)-F(7)	1.380(8)	B(2)-F(8)	1.399(9)	
O(1)-C(1)	1.157(9)	O(2)-C(2)	1.152(7)	
O(3)-C(16)	1.151(9)	O(4)-C(17)	1.148(7)	
C(3)-C(4)	1.409(9)	C(3)-C(7)	1.39(1)	
C(4)-C(5)	1.40(1)	C(5)–C(6)	1.40(1)	
C(6)-C(7)	1.40(1)	C(8)–C(9)	1.41(1)	
C(1)-C(11)	1.518(9)	C(12)–C(13)	1.50(1)	
C(14)-C(15)	1.548(8)	C(18)-C(19)	1.405(9)	
C(18)-C(22)	1.38(1)	C(19)-C(20)	1.41(1)	
C(20)-C(21)	1.41(1)	C(21)-C(22)	1.43(1)	
C(23)-C(24)	1.41(1)	C(25)-C(26)	1.49(1)	
C(27)-C(28)	1.49(1)	C(29)-C(30)	1.556(9)	
Cent1 ^a -Mn(1)	1.78	Cent2-Mn(2)	1.7 9	
C(1) - Mn(1) - C(2)	88.0(3)	C(1) - Mn(1) - C(8)	79.4(3)	
C(2)-Mn(1)-C(8)	115.0(2)	C(1) - Mn(1) - C(9)	111.0(3)	
C(2) - Mn(1) - C(9)	94.3(2)	C(8) - Mn(1) - C(9)	38.4(3)	
C(16)-Mn(2)-C(17)	90.2(3)	C(16) - Mn(2) - C(23)	80.0(3)	
C(17)-Mn(2)-C(23)	117.6(2)	C(16) - Mn(2) - C(24)	107.4(3)	
C(17)-Mn(2)-C(24)	90.7(3)	C(23)-Mn(2)-C(24)	38.4(3)	
C(9)-P(1)-C(10)	108.8(3)	C(9) - P(1) - C(12)	107.5(3)	
C(10-P(1)-C(12))	106.3(3)	C(9) - P(1) - C(14)	110.4(3)	
C(10)-P(1)-C(14)	110.1(3)	C(12) - P(1) - C(14)	113.4(3)	
C(24)-P(2)-C(25)	106.8(3)	C(24) - P(2) - C(27)	111.7(3)	
C(25)-P(2)-C(27)	113.1(4)	C(24) - P(2) - C(29)	112.8(3)	
C(25)-P(2)-C(29)	105.1(3)	C(27)-P(2)-C(29)	107.3(3)	
F(1)-B(1)-F(2)	107.6(6)	F(1)-B(1)-F(3)	107.5(5)	
F(2)-B(1)-F(3)	111.0(5)	F(1)-B(1)-F(4)	1 09.4(6)	
F(2)-B(1)-F(4)	110.7(6)	F(3)-B(1)-F(4)	110.6(6)	
F(5)-B(2)-F(6)	110.9(6)	F(5)-B(2)-F(7)	110.3(6)	
F(6)-B(2)-F(7)	109.3(5)	F(5)-B(2)-F(8)	108.8(5)	
F(6)-B(2)-F(8)	107.7(5)	F(7) - B(2) - F(8)	109.8(6)	
Mn(1)-C(1)-O(1)	176. 5(6)	Mn(1)-C(2)-O(2)	173.2(5)	
C(4)-C(3)-C(7)	107.2(7)	C(3)-C(4)-C(5)	108.6(7)	
C(4)C(5)C(6)	107. 4 (6)	C(5)-C(6)-C(7)	108.0(8)	
C(3)-C(7)-C(6)	108.8(7)	Mn(1)-C(8)-C(9)	70.0(3)	
Mn(1)-C(9)-P(1)	121.7(3)	Mn(1)-C(9)-C(8)	71.7(3)	
P(1)-C(9)-C(8)	121.7(4)	P(1)-C(10)-C(11)	114.3(5)	
P(1)-C(12)-C(13)	116.8(5)	P(1)-C(14)-C(15)	116.6(4)	

Mn(2)-C(16)-O(3)	176.8(6)	Mn(2)-C(17)-O(4)	174.5(5)	
C(19)-C(18)-C(22)	107.7(6)	C(18)-C(19)-C(20)	109.0(6)	
C(19)-C(20)-C(21)	107.4(6)	C(20)-C(21)-C(22)	107.0(7)	
C(18)-C(22)-C(21)	108.9(6)	Mn(2)-C(23)-C(24)	71.2(3)	
Mn(2)-C(24)-P(2)	123.6(3)	Mn(2)-C(24)-C(23)	70.4(3)	
P(2)-C(24)-C(23)	118.3(5)	P(2)-C(25)-C(26)	117.5(6)	
P(2)-C(27)-C(28)	115.6(5)	P(2)-C(29)-C(30)	111.5(5)	
Centl a -Mn(1)-C(1)	119.2	Cent1-Mn(1)-C(2)	119.7	
Cent1-Mn(1)-C(8)	122.0	Cent1-Mn(1)-C(9)	118.3	
$M(89)^{b}-Mn(1)-C(1)$	95.2	M(89)-Mn(1)-C(2)	105.3	
M(89)-Mn(1)-Cent1	122.1			
Cent2-Mn(2)-C(16)	121.7	Cent2-Mn(2)-C(17)	118.2	
Cent2-Mn(2)-C(23)	119.1	Cent2-Mn(2)-C(24)	120.7	
$M(2324)^{b}-Mn(2)-C(16)$	93.8	M(2324)-Mn(2)-C(17)	104.5	
M(2324)-Mn(2)-Cent2	121.9			

Tabelle 3. (fortgesetzt)

^{*a*} Cent1 ist das Zentrum der Fläche, die durch die fünf Kohlenstoffatome C(3)–C(7) bzw. C(18)–C(22) definiert wird. ^{*b*} M(89) ist die Mitte der C(8)–C(9)-Bindung, M(2324) die Mitte der C(23)–C(24)-Bindung.

Festkörperstruktur des Kations [C₅H₅(CO)₂MnCH₂CH(PEt₃)]⁺

Eine Röntgenstrukturanalyse, die am Komplex $[C_5H_5(CO)_2MnCH_2CH(PEt_3)]$ BF₄ (IIa) durchgeführt wurde, ergab, dass die Verbindung im Kristall in Form von zwei unterschiedlichen Molekülen vorlag. Die Unterschiede resultierten aufgrund der verschiedenen Orientierungen der Ethylgruppen im PEt₃-Substituenten (vgl. Fig. 1).

Wichtige Bindungsabstände und -winkel sind in Tab. 3 zusammengestellt.

Das Kation $[C_5H_5(CO)_2MnCH_2CH(PEt_3)]^+$ kann als verzerrter Tetraeder betrachtet werden, dessen Ecken vom Zentrum des C_5H_5 -Rings, der beiden CO-Liganden und der Mitte der C-C Bindung des Ylidliganden gebildet werden (vgl. Fig. 1).

Ein Vergleich der Metallacyclopropan-Atomabstände von $[C_5H_5(CO)_2MnCH_2-CH(PEt_3)]^+$ und $C_5H_5(CO)W(COMe)CHCH(PMe_3)$ zeigt, dass im Mangankomplex die Metall-Kohlenstoffatom-Abstände deutlich kleiner sind als im Wolfram-Komplex, aber im Bereich von Mn-C-Einfachbindungen liegen. Als Referenz für Mn-C- σ -Bindungen können (η^1 -CH₂CMe₂Ph)₂Mn(PMe_3)₂ (Mn-C: 2.149(6) Å [3]) und (η^1 -C₆H₂Me₃)Mn(PMe_3)₂Br₂ (Mn-C: 2.089(8) Å [4]), sowie die Manganacyclen (CO)₄MnPPh₂(CH₂)₃ (Mn-C: 2.161(9) Å [5]) und (CO)₃Mn{[C(CO₂Me)]₄-SPMe₂}, der ein Thiaphosphanorbornadien-Gerüst enthält (Mn-C: 2.131(2) bzw. 2.150 (3) Å [6]), herangezogen werden.

Auch in den Ylidkomplexen $C_5H_5(CO)_2Mn[C(PPh_3)(CCPh_2] (Mn-C: 2.065(2) Å [7]) und <math>C_5H_5(CO)_2Mn[C(COOMe)CH(PPh_3)] (Mn-C: 1.985(3) Å [8])$ werden ähnlich große Mn-C-Abstände gefunden.

Demgegenüber ist der Mn–C-Abstand im Dimanganacyclopropankomplex $[C_5H_4Me(CO)_2Mn]_2CH_2$ (2.013(4) Å [9]) deutlich kürzer als in IIa.

Der C-C-Abstand im Manganacyclopropanring von IIa (1.41(1) Å) ist etwas kürzer als im Wolframacyclopropanring von $C_5H_5(CO)_2W(COMe)CHCH(PMe_3)$ (1.448(13) Å) [2], allerdings etwas größer als der C-C-Abstand der Olefinbindung im paramagnetischen Bis(butadien)komplex (C_4H_6)₂MnCO (1.39(1) Å [10]). Im Norbornadien-analogen Komplex (CO)₃Mn[C(CO₂Me)]₄SPMe₂ [6], der als Zwitterverbindung vorliegt, ist hingegen der C-C-Abstand (1.410(3) Å) fast genauso gross wie in IIa. Die Aufweitung der C-C-Bindungen in $C_5H_5(CO)_2W(COMe)$ -CHCH(PMe₃) [2] und (CO)₃Mn[(C(CO₂Me)]₄SPMe₂ [6] ist vermutlich auf die elektronenziehende Wirkung des COMe- bzw. der COOMe-Substituenten in diesen Komplexen zurückzuführen.

Beschreibung der Versuche

Alle Operationen wurden unter Schutzgasatmosphäre und mit wasserfreien Lösungsmitteln durchgeführt. Die Ausgangsverbindungen I wurden nach bereits veröffentlichten Angaben dargestellt [1]. Zur spektroskopischen Charakterisierung dienten folgende Instrumente:

IR: Perkin-Elmer 983G; NMR: JEOL FX 90Q; Massenspektren: Varian MAT CH7 (Elektronenstoss-Ionenquelle IXB).

Darstellung der Komplexe IIa,b

1 mmol des Komplexes $Cp'(CO)_2MnCHCH(PEt_3)$ (I) wird in ca. 50 ml Diethylether gelöst und bei Raumtemperatur mit der equivalenten Menge HBF₄ (54%-ige Lösung in Diethylether) versetzt. Dabei entsteht sofort ein gelber Niederschlag. Nach zweistündigem Rühren wird die Suspension auf -78°C gekühlt, wobei das Produkt praktisch vollständig ausfällt. Die Mutterlauge wird vorsichtig abgegossen, der gelbe Niederschlag einmal mit Pentan gewaschen und anschließend im Hochvakuum getrocknet.

Ausbeute- und Festpunktbestimmungen sind in Tabelle 2 angegeben. Von IIa wurde eine Elementaranalyse erhalten. Gef.: C, 42.14; H, 5.48. $C_{15}H_{23}BF_4O_2Mn$ (408.07) ber.: C, 44.15; H, 5.68%.

Röntgenkristallographie von IIa

Von einem durch Kristallisation aus Methylenchlorid erhaltenem Einkristallfragment wurden bei -150° C auf einem Enraf-Nonius CAD-4 Diffraktometer die Röntgenmessungen durchgeführt (Mo- K_{α} -Strahlung; $\lambda = 0.71073$ Å, Graphitmonochromator). Kristallabmessungen: $0.20 \times 0.40 \times 0.60$ mm. Kristalldaten für C₁₅H₂₃BF₄O₂PMn (*M* 408.1): Raumgruppe *Pbc*2₁; Gitterkonstanten: *a* 19.733(8), *b* 14.018(7), *c* 12.982(7) Å. Für Z = 8 berechnete Dichte: 1.51 g cm⁻³, Zellvolumen 3591.0 Å³. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich: $2 \le 2\theta \le 52^{\circ}$; 3930 unabhängige Reflexe, 3147 Reflexe mit $F_0 \ge 5\sigma(F_0)$ zu den weiteren Rechnungen benutzt. Lp-Korrektur und empirische Absorptionskorrektur (μ 8.1 cm⁻¹). Strukturbestimmung mit MULTAN [11]. Die Wasserstoffatome der Methylgruppen wurden durch Differenz-Fourier-Berechnungen lokalisiert und sind mit festen Beträgen (B = 5.5 Å²) in der Verfeinerung enthalten. Die Verfeinerung der Nichtwasserstoffatome mit anisotropen Temperaturfaktoren ergab für R = 0.043 und Rw = 0.048 [12]. Die Untersuchung der inversen Konfiguration lieferte einen höheren *R*-Wert.

Die benutzten Formfaktorwerte für Neutralatome und die Korrekturwerte stammen aus Ref. 13. Benutztes Programmsystem SHELX-76-System [14].

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung sowie dem U.S. National Science Foundation Instrumentation Program für die Beschaffung des Diffraktometers.

Literatur

- 1 H.G. Alt, H.E. Engelhardt und E. Steinlein, J. Organomet. Chem., 344 (1988) 321.
- 2 H.G. Alt und U. Thewalt, J. Organomet. Chem., 268 (1984) 235.
- 3 C.G. Howard, G.S. Girolami und G. Wilkinson, J. Chem. Soc., Dalton Trans., (1983) 2631.
- 4 R.J. Morris und G.S. Girolami, Organometallics, 6 (1987) 1815.
- 5 E. Lindner, G. Funk und S. Hoehne, Angew. Chem., 91 (1979) 569; Angew. Chem. Int. Ed. Engl., 18 (1979) 535.
- 6 E. Lindner, A. Rau und S. Hoehne, Angew. Chem., 91 (1979) 568; Angew. Chem. Int. Ed. Eng., 18 (1979) 534.
- 7 N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, O.M. Khitrova, A.S. Batsanov und Yu.T. Struchkov, J. Organomet. Chem., 265 (1984) 271.
- 8 N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, I.N. Chechulina, A.S. Batsanov und Yu.T. Struchkov, J. Organomet. Chem., 238 (1982) 223.
- 9 M. Creswick, I. Bernal und W.A. Herrmann, J. Organomet. Chem., 172 (1979) C39.
- 10 G. Huttner, D. Neugebauer und A. Razavi, Angew. Chem., 87 (1975) 353; Angew. Chem. Int. Ed. Engl., 14 (1975) 352.
- 11 G. Germain, P. Main und M.M. Woolfson, Acta Cryst., A27 (1971) 368.
- 12 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopholdshofen 2, unter Angabe der Hinterlegungsnummer CSD-53197, angefordert werden.
- 13 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, England, Vol. IV, pp. 72, 99, 149.
- 14 SHELX-76 Programmsystem; G.M. Sheldrick, Göttingen, unveröffentlicht.